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2010 WORDS+ / ISAAC OUTSTANDING CONSUMER LECTURE 
 

Philosophy of mathematics – What the heck is that? 
 

By Thor Sandmel 
 
 

First, I want to thank the Outstanding Consumer Lecture Committee for granting me this 
award and the opportunity to speak to you today. I hope you will enjoy the lecture. 
 
Let me start by giving a preliminary answer to the question in the title of this lecture. First: 
philosophy of mathematics is philosophy, and definitely not mathematics. Thus, it is not 
"philosophical mathematics". Nor is it "mathematical philosophy". At least in my opinion, 
mathematics simply cannot be philosophical, and philosophy cannot be mathematical.  
 
So, philosophy of mathematics is neither philosophical mathematics nor mathematical 
philosophy. What is it, then? It is, quite simply, philosophy about mathematics, a branch of 
philosophy having mathematics as its subject matter. You wonder how philosophy can be 
about mathematics? Well, philosophy can be about absolutely anything at all. There is no 
field of human knowledge, activity or experience that does not raise "meta-questions", as to 
the validity, origin, genesis, and general nature of the knowledge, activity, or experience, and 
such meta-questions are generally called philosophical. 
 
But enough talking, for now. I intend to prove to you that you are indeed all philosophers of 
mathematics. That can only be done by letting you see yourself acting as philosophers of 
mathematics. So, let's get some action! 
 
I shall start by posing a few simple questions and exercises, and give you a couple of minutes 
to mull over them. Mind you, this is not an exam, I will not collect your answers and cover 
them with red marks. And there is no such thing as cheating. In fact, discussing with your 
neighbours is strongly encouraged, as it will almost certainly enhance your learning 
experience. 
 
Here goes: 
 
1. What mood does listening to "Summertime" from "Porgy and Bess" get you into? (If you 
don't know this song, feel free to choose any other song well known to you.) 
 
2. How many people are there in this room? 
 
3. What is worse of toothache and headache? 
 
4. How many words are there in this sentence? 
 
5. Is there a number which multiplied by itself equals 2? 
 
6. Construct a plane biangle, i.e. a closed figure limited by two straight lines (the same way as 
a triangle is a closed figure limited by three straight lines). 
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7. Given an equilateral triangle, i.e. a triangle where all three edges are of equal length. Divide 
it into four exactly equal equilateral triangles. 
 
Now, I'll give you a couple of minutes to think about these seven questions or exercises. Don't 
take this too seriously, don't fret about finding the "correct" answers, just give them all a try. 
 
(Pause) 
 
OK, I guess we have to resume now, or we shall be too late for lunch. Now, we will let the 
seven exercises remain on the screen, while I give you some meta-exercises, exercises about 
these exercises. First: 
 
Meta-exercise 0: Why did I give you these silly exercises? 
 
Think a little about this. After the lecture, you may think again, and see if you have changed 
your mind. 
 
(Brief pause) 
 
Two more meta-exercises to go: 
 
Meta-exercise 1: Which of these exercises were mathematical? 
 
And 
 
Meta-exercise 2: Which exercises had anything at all to do with mathematics? 
 
Again, I will give you a couple of minutes to review the exercises in the light of the meta-
exercises. Do feel free to discuss with your neighbours. 
 
(Pause) 
 
Time to move on again. Now we are getting really advanced: Here comes the 
 
Meta-meta-exercise: How did you solve the meta-exercises? How do you distinguish between 
mathematical exercises, exercises with both mathematical and non-mathematical content, and 
exercises having nothing to do with mathematics? 
 
Take a minute or two to think about this. And if you are getting nervous about the meta-meta-
meta-exercise, the meta-meta-meta-meta-exercise etc., just take it easy. I promise you, we 
shall not climb any higher on the ladder of abstraction. 
 
(Pause) 
 
Done? 
 
Of course not. I have thought consciously about this for about 35 years (and subconsciously 
since early childhood), and I still feel there is more to find out about it. So I certainly do not 
expect you to figure it all out in two minutes. Like all other endeavours of life, philosophy of 
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mathematics is not so much about the final answers, whatever they may be, as the process of 
searching for temporary, partial answers, posing new and maybe more precise questions, and 
so on. Thus, whatever you thought about this last question, I can congratulate you on having 
done some philosophy of mathematics! 
 
Indeed, the meta-meta-exercise poses one of the core questions of the philosophy of 
mathematics: What, if anything, distinguishes mathematical knowledge and activities from 
other kinds of knowledge and activities? Another question, which may be regarded as the 
reverse side of the same coin, is: What, if anything, is common to mathematical knowledge 
and activities, and this or that other kind of knowledge and activities? A third question, 
forming an almost Hegelian synthesis of the two first, is: What connections are there between 
mathematical knowledge and activities, and other kinds of knowledge and activities? 
 
Before going on, I shall make brief comments on each of the seven exercises, not to give you 
"the one and only correct answer", but to satisfy some of your curiosity, give you some more 
food for thought, and perhaps clear up a few possible misunderstandings. 
 
1. Here I am asking for your emotional reaction to a piece of music. Of course, there are deep 
connections between music and mathematics, but those connections would seem to have very 
little, if any, bearing on our emotional response, as a quality of a specific experience. 
 
2. This involves the most elementary of all mathematical activities: counting. Thus, this 
exercise obviously has something to do with mathematics, and at kindergarten level it might 
even count as a mathematical exercise. But with a view to our search for distinguishing 
characteristics of mathematics, we should also ask for any peculiarity of this counting 
procedure. One very outstanding feature is its formality. When you tried to estimate the 
number of people in this room, did you take their respective age, size, gender or clothing into 
account? Of course not! A young beautiful girl counts just as much as an ugly old troll like 
me. You abstracted from almost all the information your senses were gushing upon you. The 
people were no longer individuals in all their glorious inequality, they were reduced to 
abstract units to be successively added to an equally abstract set. In short, you were focusing 
on one single, tiny, purely formal aspect of your experience, leaving out all other aspects as 
irrelevant to the task at hand. 
 
3. Here we are comparing two different experiences as to their painfulness. Again we are 
disregarding the full content of the experiences, trying to put them on a common scale of pain. 
The comparison is qualitative, not quantitative, so we are not using the full concept of 
number. But we are in fact using a rather advanced concept, which in abstract algebra is 
called "partial order". This very general concept can also incorporate the possibility that 
toothache and headache are not comparable with regard to painfulness. Thus, improbable as it 
may seem, this exercise could in fact be interpreted as having something to do with 
mathematics, more precisely, abstract algebra. However, as it only involves a direct 
application of an idea capable of being moulded into an abstract mathematical concept, 
without any argument or reasoning occurring, regarding it as a mathematical exercise would 
be a little far-fetched. But if we had elaborated it a little, saying for instance: "If toothache is 
worse than stomach-ache, and stomach-ache is worse than headache, what is then worse of 
toothache and headache?", it might be construed as a simple mathematical exercise, its answer 
depending on whether the relation "worse than" is assumed to have the transitivity property 
we normally take for granted in any (potentially) numerical scale. If a mouse is smaller than a 
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cat, and a cat is smaller than an elephant, then, lo and behold, a mouse is smaller than an 
elephant! What a mind-shattering insight! 
 
4. This is a simple counting exercise, but it has a curious quality of "self-reference", it is a 
sentence asking about itself. Such self-reference is far from unknown in our daily thinking, 
we are (or at least we should be) constantly questioning our own words as we are saying 
them. But here the self-reference is very explicit. Also, it is somewhat paradoxical in that the 
answer may vary with the language used, and even with different ways of putting it in the 
same language. The answer to "How many words are there in this sentence?" is obviously 8, 
but if we had said essentially the same thing this way: "How many words does this sentence 
contain?", the answer is suddenly 7. My French is rusty, to put it mildly, but I hope this is not 
too far from being correct: "Combien de mots y a-t-il dans cette phrase?" Here, if we count a-
t-il as two words, the answer is 9. In my language, Norwegian, we do not have the "do-
construction", so we could say, translated word by word: "How many words contains this 
sentence?", which brings the count down to 6. 
 
Self-reference can also lead to real paradoxes, as in "This sentence is false". If it is true, then 
it is false, but if it is false, then it is true! Another version is the so-called "Liar's paradox". If I 
say: "I am lying", then if I am lying I am telling the truth, but if I am telling the truth, I am 
lying! What a mess! 
 
5. This one was a real headache, perhaps worse than a toothache, for the ancient Greeks. On 
the one hand, they could easily construct a right-angled triangle where the two perpendicular 
sides were of equal length, say one meter, or whatever length unit they had. Of course, they 
knew their Pythagoras very well: the square on the hypotenuse is the sum of the squares on 
the two perpendicular sides. This sum is clearly 2. Thus, the length of the hypotenuse, 
measured in the same unit as the other sides, should be a number which multiplied by itself 
equals 2. 
 
On the other hand, their number concept included the natural numbers, i.e. the numbers we 
use in counting, 1, 2, 3, etc., and fractions of these. Obviously, there is no natural number 
which multiplied by itself equals 2. But they could also prove that there is no fraction which 
multiplied by itself equals 2. They could get as close as they wanted, but they could never get 
exactly 2. 
 
Euclid developed a complex theory of "proportions" to deal with this difficult situation. These 
"proportions" were in effect a new kind of "numbers", of which the natural numbers and the 
fractions formed only a small part. Within this new expanded set of "numbers" there is a 
number which multiplied by itself is exactly 2. 
 
So, the answer to the exercise is no if you only accept natural numbers and fractions as 
"numbers", and yes if you also accept this new kind of numbers. Nowadays we have other, 
simpler ways of constructing the so-called "real numbers", and we have also made several 
further expansions of the number concept. 
 
6. Here, I have been really naughty. I hope you did not waste too much time on this one. 
There simply are no plane biangles! Try as you might, you have to have at least three straight 
lines to get a closed figure. Why? Alas, I cannot give you a satisfactory answer to that simple 
question here. I can only say that it has to do with some deep properties of our immediate 
intuition of space. 
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Some of you may have heard of "non-Euclidean geometries". The geometry we learned at 
school was the good old Euclidean one, and until about two centuries ago there was no other 
geometry. But problems related to Euclid's parallel postulate eventually led some brave souls 
to entertain the idea of alternative geometries, which quite naturally were dubbed "non-
Euclidean". Now, in one of these alternative geometries plane biangles are in fact possible! As 
it happens, this geometry can be fairly accurately depicted in Euclidean spherical geometry. 
On a sphere, of course, there are no straight lines. But if you cut a sphere with a plane, the 
cutting curve will be a circle, and if the plane goes through the centre of the sphere, the circle 
will have the same radius as the sphere itself. Such circles are understandably called "great 
circles" on the sphere. If we ignore the fact that the earth is not a perfect sphere - like some of 
its inhabitants it is a bit fatter round the middle - we can think of the equator and the 
meridians. Now, if we accept the great circles as "best substitutes" for straight lines on the 
sphere, we see that any two such "straight line substitutes" will indeed give us a "spherical 
biangle". For instance, the meridian through Greenwich and the meridian through St. 
Petersburg give a biangle containing Barcelona and the easternmost part of Spain, most of 
France, a little bit of England, and almost all the rest of Europe, except Portugal. It would also 
include a large chunk of Africa, with Libya, Tunisia, Chad, Nigeria, etc. 
 
7. This one is simple, if you draw the right lines. I guess the figure says it all: 

 
 
Each of the small triangles is equilateral, like the large one - well, at least if you disregard my 
ineptitude at drawing. What is really important here is to realize that we could repeat the 
process ad indefinitum, getting smaller and smaller triangles, and we could also go the other 
way, regarding the large triangle as part of an even greater one, and repeat that process too, 
getting larger and larger triangles. This reveals a very important quality of space, which I have 
called "homogeneity of scale": no matter how much we zoom in or out, space always "look 
the same". This is not the case for the non-Euclidean geometries. Thus, in my opinion, only 
Euclidean geometry describes the space of our intuition, space as immediately perceived by 
us. 
 
Now, back to the peculiarities of mathematical knowledge. Consider a very simple example: 
At school I learned that there are nine planets in our solar system. Since then, poor Pluto has 
been robbed of its planethood, so now there are eight. I don't know about you, but I feel that 
the number of planets in the solar system is a rather arbitrary fact (or "contingent", as the 
philosophers like to say). There might have been five, or seven, or fifteen, or whatever. 
Probably, there are other solar systems out there with any of these numbers of planets. Now, I 
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also learned that 2 plus 2 equals 4. Could this also have been different? Could there be some 
other place in the universe, or some other conceivable universe, where 2 plus 2 equals 3, or 5? 
I think most of us would say no. But if asked why, most of us would be hard put to come up 
with a cogent answer. Besides, let us apply this simple arithmetical fact, for instance to "live 
animals": 2 live animals plus 2 live animals equals 4 live animals. In most cases, this is 
undeniably true. But what if the two first animals were hungry wolves and the other two were 
sheep? Well, in the garden of Eden this might still give four live animals, but in our brutal 
world the most probable result of this calculation is two happy, satisfied wolves and two 
eaten-out sheep carcasses.  
 
I think most of you would agree with me that this case does not constitute a counterexample 
to the general truth of 2 plus 2 equals 4. Why? I cannot give you my complete answer here, 
just hint that, in my opinion, arithmetic is about successions, not about the fortunate relative 
stability of the objects in our world. And after all, the wolves and the sheep would remain four 
live animals – two salivating wolves and two terror stricken sheep - for a few seconds. 
 
If "2 plus 2 equals 4", and maybe all other mathematical truths as well, really could not have 
been otherwise, these truths clearly differ from most other truths we know. While a physical, 
psychological, astronomical, or historical assertion may be true, a mathematical assertion 
would seem to be not only true, but necessarily true. In philosophy, such assertions are called 
a priori. Mind you, that an assertion is a priori only means that if it is true, it is necessarily 
true. It does not mean that it is obviously true, or that we can be absolutely sure that it is true. 
This is, in fact, a common misunderstanding, even among distinguished professors of 
philosophy! So, now you can brag about knowing more than they do! But don't tell them I 
told you, or they will pursue me for the rest of my life... 
 
So, our gut feeling, as amateur mathematicians, is that mathematical statements are a priori in 
this specific sense, and I can tell you, without a shadow of a doubt, that the more 
mathematical experience you get, the more certain you will be about this gut feeling. 
Nevertheless, contrary to the situation just two centuries ago, most philosophers of 
mathematics today reject it. In fact, I find myself belonging to the endangered species of "a 
priorist" philosophers. Not only do I assert that mathematics is a priori, I also claim to have 
incontrovertible proof of this alleged fact, thereby causing such vigorous headshaking by the 
majority of my colleagues that I am afraid they may injure their necks. 
 
I cannot go further into this issue here. Instead, I shall briefly sketch the main historically 
occurring positions in this field, with the question of whether mathematics is a priori as a 
convenient starting point. 
 
Ok, we have to decide what to do about this gut feeling. If we choose to accept it, then it is 
natural to ask whether there are other a priori sciences. The most obvious candidate is, of 
course, logic. I mean, if a bachelor is defined as an "unmarried man", then the claim "all 
bachelors are unmarried" may not be very enlightening, but it is most certainly true. 
Moreover, it is necessarily true, it is absolutely inconceivable that we would ever find a 
counterexample, i.e. a married bachelor. Thus, logic would seem to be even more obviously a 
priori than mathematics. 
 
With two a priori sciences, what is the relationship between them? One possible answer is that 
mathematics is deducible from, or even essentially identical with, logic. This is the position 
called logicism. The German philosopher Gottlob Frege tried to carry out the deduction of a 
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part of mathematics, arithmetic, from logic. His attempts ended up in self-contradictions, the 
so-called paradoxes of set theory. So, logicism did not seem to work very well. Nonetheless, a 
reduced version of logicism, "if-then-ism", is more or less enthusiastically endorsed by most 
mathematicians. This approach admits the possibly non-logical character of mathematical 
axioms and theorems. Only mathematical proofs or inferences, i.e. "if-then-statements", are 
still said to be derivable from pure logic. Everybody agrees that the old Aristotelian logic does 
not suffice, but most philosophers and mathematicians say that with modern so-called second-
order quantificational logic, the task is still formidable, but feasible. I beg to disagree. My 
contention is that many inference patterns now counted as "logical", are not purely logical at 
all, but distinctly mathematical, so that we really end up saying that mathematics can be 
derived from mathematics, which does not seem very surprising. 
 
Thus, despite its popularity among mathematicians, if-then-ism does not seem to offer a 
viable way of validating our gut feeling about mathematical statements being a priori, i.e. 
necessarily true, if true. But what about going all the way? We have already noticed the 
curious formal character of mathematics. Now, instead of just retreating from asserting the 
truth of the axioms and the theorems as independent statements, but still assert the allegedly 
logical connections between them, we could retreat from asserting anything at all. To see that 
this seemingly absurd position is even conceivable, we have to consider a simple but easily 
overlooked fact: To be expressible and communicable at all, any mathematical definition or 
statement has to be expressible as a finite sequence of symbols. This is not very surprising. 
After all, even a sonnet by Shakespeare is expressed as a finite sequence of letters, spaces, and 
punctuation marks. 
 
So, what we need is a finite set of symbols, rules for combining those symbols into terms, 
rules for combining terms into definitions and statements, some finite set of statements called 
axioms, and finally rules for "valid" transitions from a statement or set of statement to a new 
statement. I am omitting a lot of intricate details here, but this is enough to get the general 
picture needed for our introductory purposes. Such a collection of symbols and rules we may 
call a formal system, and the program of formalism, a way of thinking in the philosophy of 
mathematics instigated by the great mathematician David Hilbert, is to translate all of current 
(and future) mathematics into such formal systems. 
 
If Hilbert's vision had come to fruition, everything would have been rather transparent. We 
would simply resort to juggling finite sequences of symbols, meticulously observing the rules 
of the game. And that is all that is left: a game just like chess, a lot more complex and 
intricate, but yet a game. Hmm, this seems to fit rather well with the picture most people have 
of what mathematicians are doing… 
 
But formalization proved to be more powerful than Hilbert had bargained for. Indeed, it was 
powerful enough to prove its own limitations! In the 1930's, a young German mathematician, 
Kurt Gödel, was able to construct a formal statement essentially saying of itself: "I am not 
provable". He was also able to prove that if a formal system strong enough to be of any 
mathematical interest is consistent, i.e. free from contradictions, then this can never be proved 
within the formal system itself. Thus, formalization can never be complete, and formalism, 
though elucidating the essential feature of formality, did not give us a completely satisfying 
picture of the nature of mathematics. 
 
Now we seem to be back at square one. Do we really have to reject our gut feeling that 
mathematics is a priori? In fact, a majority of contemporary philosophers of mathematics 
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draw that conclusion, and most of the current discussion in the field is really between 
different versions of empiricism. The central thesis of empiricism is that mathematical 
statements, like 2+2 = 4, are empirical, on a par with physical laws like the law of gravity or 
astronomical facts like the number of planets in our solar system. Well, how do empiricists 
account for our persistent gut feeling? Of course, there are variations, but the common 
denominator of their answers is that some portions of our experience are more certain and 
therefore more immune to change, than others. Our total body of knowledge could be 
compared to an onion, where the outer layers are most liable to be changed by new 
experience.  Logic and mathematics belong to the innermost core, and are therefore far less 
likely to undergo any substantial corrections, no matter how bizarre our future experience 
may be. But even here no absolute guarantee against future corrections can be issued. Our gut 
feeling is therefore correct in giving us greater faith in mathematical facts than in most other 
facts we encounter. It is just not correct in asserting the absolute necessity of these facts. 
 
Nice try, but no thanks! In most cases, I am willing to negotiate to reach an agreed 
compromise, but when it comes to truth, I am a hard nail. And I just don't buy this. To me, the 
difference between logic and mathematics on the one hand, and other fields of knowledge on 
the other, is a difference of species, not one of degree. Therefore, I am obliged to reject 
empiricism out of hand. 
 
Fortunately, we have not yet exhausted all possibilities. Hitherto, we have all but ignored the 
role of the human mind. We have talked about logic, formal systems, and experience, as some 
abstract entities existing "out there". But of course, it all goes on in our minds. A textbook of 
mathematics is no different from a novel or a dictionary until someone reads it and hopefully 
understands it. Thus, mathematical objects and processes would seem to be a kind of mental 
entities and activities. This is the view of intuitionism, instigated by the Dutch mathematician 
Brouwer. 
 
For intuitionism, mathematical objects and operations are a certain kind of mental 
constructions. "Construction" and "constructibility" are the core concepts. The plane biangle 
does not exist because it cannot be constructed. On the other hand, we can easily construct a 
right-angled triangle with the two perpendicular sides of equal length, and the length of the 
hypotenuse gives a number which multiplied by itself equals 2, so this number does exist. 
 
This scheme seems to work very well. But there are problems with this demand for 
constructibility. For instance, the life-time of the human race is probably limited. Therefore, 
most natural numbers will never be explicitly constructed by any human being. But don't they 
exist? 
 
As you may have guessed, I am not altogether satisfied with the intuitionist approach either. 
And now I am running out of time, so this will be the last approach I will tell you about. But 
before I end the lecture, I feel obliged to at least hint at my own preferred approach. 
 
Brouwer's intuitionism is quite explicitly inspired by Immanuel Kant's account of 
mathematical knowledge. In Kant too, the concept of construction is crucial. Also, he would 
partly agree with Brouwer as to the "non-logical", yet a priori, character of mathematics. 
However, in my opinion Brouwer both oversimplifies and complicates the Kantian concept of 
construction, thereby making his approach very vulnerable to empiricist assaults. I mean, we 
may grant that our mental operations are a part of nature, but why should other parts of nature, 
as apples or stones, conform to our mental predilections? Is it not more probable that these 
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predilections have developed in response to our prolonged experience with apples, stones, and 
other natural phenomena? 
 
To counter such objections, we have to dig deeper into the conditions of the possibility of 
experience itself, and that is exactly what Kant does. His philosophy of mathematics flows 
naturally from these deep investigations, and in my opinion gives a far more adequate account 
of mathematical knowledge than any of the other approaches, which is quite remarkable, 
given the enormous development in mathematics after his time (he died in 1804). But I can 
say no more here. If you are interested, shoot me an e-mail, and I will happily deluge you with 
ample material on this issue. 
 
Thank you for your attention! 
 


