

Where Are We Looking? Analyzing Eye-Movements During a Symbol Search Task

Presenters: Maxine Perrin, M.Sc.S. student

Manon Robillard, Ph.D.

Co-Author: Annie-Roy Charland, Ph.D.

Introduction

• An individual can say 150 words per minute

 When using an AAC device, communication slows down to approximately 10 words per minute

(Trnka, Yarrington, McCaw, & McCoy, 2007)

Previous Studies

- Vocabulary (i.e. Burke, Beukelman & Hux, 2004; Light, Wilkinson & Drager, 2008)
 - Choice of vocabulary
 - Representation
 - Organization
 - Categorization
- Visual information (i.e. Wilkinson & Jagaroo, 2004; Wilkinson, Light & Drager, 2012)
 - Perception
 - Identification
 - Interpretation

Objectives

- Observe and analyze the eye-movement patterns involved during a symbol search task.
- Determine key zones on a speech grid to better understand the layout needed and facilitate programming of AAC systems.

Eye movements

- <u>Fixation:</u> a period of time when the eyes become still on new information in the scene in order to allow information to be processed (Rayner, 2009).
- Saccade: eye movement within a visual scene, from one fixation to another (Rayner, 2009).

Method

Participants and Materials

 30 undergraduate students from Laurentian University, Canada

- Eye-Link II
 - SR Research Ltd.
- 120 grids with 16 symbols
 - Picture Communication Symbols (PCS)
 - Boardmaker®Plus!

Procedure

- One session lasting <u>30 minutes</u>
 - Presentation of the target word
 - Presentation of a blank screen
 - Presentation of the symbol grid
- Participant selects the symbol
- Drift correct is presented between each trial

Analysis and Results

Accuracy

• Calculated by dividing the number of times where the participant selected the targeted cell with the number of total trial.

Accuracy – Results

Reaction time

 Calculated from the moment where the symbol grid appears until the time the participant selects an image with the mouse.

Reaction time - Results

Fixation durations

 Calculated by adding the time of each individual fixation within a cell.

Fixation durations – Results

Number of fixations

• Calculated by summing the fixations in each cell.

Number of fixations – Results

Probability of fixation

- Calculated by giving a score of 1 when the cell was fixated and 0 when it was not fixated for each trial
- Proportion was calculated by dividing the number of times a cell was fixated by the total number of trials

Probability of fixation – Results

Conclusion

Conclusion

Useful tragedies when programming an AAC system:

1. Placing high frequency symbols in the following

cells:

Cell 3

Cell 6

Cell 7

Cell 10

• Cell 11

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

2. Placing repetitive symbols in the bottom row (i.e. main page, next page, toilet, help...)

Current & Ongoing Study

Comparison with Children

Comparison of the 2 studies

Adults-University Group

- 120 trials
- 16 symbol grid
- Word stimulus was presented visually

Children-

Kindergarten Group (age 4-5)

- 60 trials
- 16 symbol grid
- Word stimulus was presented visually and with audio
- Addition of evaluating cognitive abilities
 - Sustained attention
 - Cognitive flexibility

General results – Kindergarten

General results – Kindergarten

General results – Kindergarten

Comparison of conclusions

Influence of cognitive abilities

- Sustained attention = good predictor of participants reaction times and their accuracy
- Cognitive flexibility = no link with either of these two aspects

Limits

Using a typically developing population versus AAC users or people with CCN

- Using a static display versus dynamic displays
- Using strictly symbols

Thank you! QUESTIONS?

References

- Burke, R., Beukelman, D. & Hux, K. (2004). Accuracy, efficiency and preferences of survivors of traumatic brain injury when using three organization strategies to retrieve words. *Brain Injury*, 18, no. 5, 497 507.
- Light, J., Wilkinson, K., & Drager, K. (2008). Designing effective AAC systems: research evidence and implications for practice, *Paper presented at the Annual Conference of the Annual American Speech-Language-Hearing Association*, Chicago. November.
- Rayner, K. (2009). The 35th Sir Frederick Bartlett lecture: Eye movements and attention in reading, scene perception, and visual search. *The Quarterly Journal of Experimental Psychology*, 62, 1457 1506. doi: 10.1080/17470210902816461.
- Wallace, S., Hux, K., & Beukelman, D. (2010). Navigation of a Dynamic Screen AAC Interface by Survivors of Severe Traumatic Brain Injury. *Augmentative and Alternative Communication*, 26(4), 242-254.
- Wilkinson, K.M. & Jagaroo, V. (2004). Contributions of principles of visual cognitive science to AAC system display design. *Augmentative and Alternative Communication*, 20, 123 136.
- Wilkinson, K.M., Light, J. & Drager, K. (2012). Considerations for the composition of visual scene displays: Potential contributions of information from visual and cognitive sciences. *Augmentative and Alternative Communication*, 28, 137 14.