

March 27, 2019 7:00 PM Eastern

An introduction to non-invasive brain-computer interface techniques for AAC

Presenter: Kevin Pitt, MS, Doctoral Candidate

Webinar Logistics USSAAC

ASHA CEUs – live webcast

- Included for USSAAC members; \$25 – non-USSAAC members
- Participant form and instructions on USSAAC website
- Can only receive CEUs for *live* webinar
- NOTE: You need to scan and send participant form to <u>smeehan8@ku.edu</u> by

April 10, 2019

- Archived webcasts <u>https://www.isaac-</u> <u>online.org/english/news/</u> <u>webinars/</u>
- Enter questions in the chatbox. We will answer as time permits.

WHAT WILL YOU LEARN?

1) Different non-invasive brain-computer interface techniques.

- 2) Various considerations for brain-computer interface assessment.
- 3) Future directions for integrating brain-computer interfaces into clinical practice.

An Introduction to Non-Invasive Brain-Computer Interface Techniques for Augmentative and Alternative Communication

Kevin Pitt, M.S., ABD University of Kansas

Disclosures

Financial: Kevin Pitt works as a graduate research assistant (GRA) for NIH R01 Research Grant DC016343-01A1 (PI: Dr. Brumberg). and NIH R03 Research Grant DC011304 (PI: Dr. Brumberg).

Dissertation work is supported by the Texas Woman's University Woodcock Institute Research Grant and the University of Kansas Graduate Summer Scholarship

Nonfinancial: No relevant nonfinancial relationship exists.

Outline

1a) Emerging AAC access technologies1b) What is a BCI?

- 2) What do stake holders think about BCI?
- 3) Work on the translation of Brain-computer interfaces (BCI) into clinical practice
- 4) Future research directions

Focus:

- Communication impairment due to severe physical impairment (SPI)
- Cerebral Palsy
- Amyotrophic lateral sclerosis (ALS)
- Locked in Syndrome

1a) AAC access technologies

- Brain-computer interface (BCI)
- Movement sensing technology
- Electromyography (EMG)
- Eye-gaze
- Head tracking
- Multimodal: Eye-gaze +
- Besides BCI: oculomotor/motor control
- Environmental restrictions

Movement sensing Image taken from Fager et al., 2019

EMG switch - NeuroNode

- Need new access technologies along side existing methods
- Everyone has access method

1b) What is a BCI?

- Focus: Noninvasive BCI

- Record summed activity of thousands of neurons at the scalp using electroencephalography (EEG) – device control

- Common: For individuals unable to perform movements needed for conventional access

- Learning demands (e.g., Liberati et al., 2015)

- Support across life span

For more information see: Brumberg, J., Pitt, K., Mantie-Kozlowski, A., & Burnison, J. (2018). Brain-Computer Interfaces for Augmentative and Alternative Communication: A Tutorial. *American Journal of Speech-Language Pathology*, 1-12

Non-invasive BCI overview

Image taken from: Wolpaw et al., 2002

2) What Do Stakeholders Think?

- Emerging research
- Overall, positive view of BCI technology individuals with neuromotor disorders (Liberati et al., 2015; Blain-Morales et al., 2012)
- Freedom, hope and connection, unlocking (Blain-Morales et al., 2012)
- 84% of individuals with ALS reported they were willing to wear an EEG cap (Huggins, Wren, & Gruis, 2011)
- Concerns noted by caregivers for long term wear ability

(Liberati et al., 2015)

Stakeholder Opinions

Impact of BCI on an individual's life with advanced ALS...
Use of P300-BCI for over 2.5 years

•	Subject:		
	From:		
	Date:	9/14/2007 1:36 PM	
	To:	Jonathan Wolpaw	
			_
	No prot	blem.	
	I could and my	n't run my lab without BCI. I do molecular neuroscience research grant pays three people.	
	I'm writ Brain-C	ting this with my EEG courtesy of the Wadsworth Center Computer Interface Research Program (<u>www.wadsworth.org</u>).	
			•
8			1

Figure taken from: Sellers, Vaughan, & Wolpaw (2010)

Limitations Noted

- Level of technology
- Cognitive load/maintaining focus
- Fatiguing (Blain-Morales et
- Frustrating/ effortful at times
- Set up is cumbersome
- Need for increased reliability (around 70%; <70-90%)

(e.g., Brumberg et al., 2017; Marchetti & Priftis, 2015)

Rate

(for review see Brumberg et al., 2018)

- Current BCIs slower than existing AAC methods (e.g., 5-10 selections per minute).
- BCIs in development up to 33 characters/minute

(e.g., Townsend & Platsko, 2016 ; Chen et al., 2015)

Rock Chalk, JAYHAWK!

(e.g., Blain-Morales et al., 2012)

(e.g., Pasqualotto et al., 2015)

(Blain-Morales et al., 2012; Liberati et al., 2015)

(Blain-Morales et al., 2012)

(e.g., Miralles et al., 2015; Liberati et al., 2015)

However, Different BCI Experiences

- Not everyone feels the same about existing AAC methods...

Individuals with ALS experience P300 BCIs differently

- Workload ratings
- Comfort ratings
- Ease of use ratings
- Satisfaction ratings

(Peters, Mooney, Oken, & Fried-Oken, 2016)

- Performance linked?

(e.g., Miralles et al., 2015)

- Consider factors on an individual basis

3) Translation of BCI into Clinical Practice

Research looking to support the transition of BCI into clinical practice

- A. Feature matching assessment framework for BCI
 - Overview of different BCI paradigms
- B. Development of BCI Screening tools
- C. BCI access to commercial AAC devices and paradigms

A) Feature matching

AAC Serves Heterogenous Populations:

- 40% mild impairment
- Varied: executive function defects (e.g., attention)
- Frontotemporal dementia, approximately 5 to 14%
- Differing BCI/AAC perspectives

Feature match an individual to a device

- 1. Current and future profile
- 2. Cognitive
- 3. Linguistic
- 4. Sensory
- 5. Motor
- 6. Trial based preference

New concept for BCI (e.g., Pitt et al., in press)

Different BCI paradigms

1. P300 overview

- Feature matching considerations

2. Steady state visually evoked potentials

- Feature matching considerations
- 3. Motor (imagery) based systems
 - Feature matching considerations

Visual Sensory BCIs: P300 Spellers

- All items randomly flash & generate a brain response when attending to desired item
- Repeat sequence many time (> 1, < 15) select item with greatest response
- <u>Auditory-based</u>

Image taken from Perseh & Kiamin (2013).

P300 Grid Speller

Donchin et al. (2000)

	SPEE	
SPE	E	\sim
SPEE	□ □	C
K		

RSVP Speller

Acqualagna & Blankertz (2010) Orhan et al. (2012)

P300 Grid Video

Guger Technologies https://www.youtube.com/watch?v=tI_CoJ8ICPA

RSVPKeyboard https://www.youtube.com/watch?v=4cxaNXe9rVI&t=3s

P300 Grid/RSVP

P300 Grid Speller

RSVP Speller

(Brumberg et al., 2018)

Considerations	Concerns
Degree of oculomotor control for overt attention	Severe visual acuity impairment
(Brunner et al., 2010)	Severe oculomotor impairment
Working memory	
(Fried-Oken, et al., 2013; Sprague et al.,2015),	History of seizures (less than those associated with steady state visually evoked potential, due to moving
Selective attention/ temporal filtering:	stimuli)
Ability to attend to relevant stimuli amongst a stream of irrelevant or distracting stimuli) (Riccio et al., 2013)	
Literacy	
Positioning – headrest impedance (e.g., Fried-Oken, et al., 2013)	

Auditory P300

Considerations	Concerns
Auditory perception and stream segregation abilities are needed	Currently, normal visual acuity supports BCIs with visual feedback over auditory despite normal hearing (more mature
Tones may be modified to match hearing acuity/ range.	methods).
Engages attention, working memory	
Increased level of attention and short term memory capacity for navigation. (Klobassa et al., 2009; Kübler et al., 2009).	

Traditional view of BCI grid spellers

- Tactile (left vs right hand)
- Less mature

Steady State Visual Evoked Potential (SSVEP) & Auditory Steady State Response (ASSR)

- SSVEP Attending to a flicker stimuli ``tagged'' with a unique strobe frequency, generates recordable brain oscillations that contain the same frequency components.
- ASSR TWO sound streams that containing different frequency modulations.

SSVEP (Directional)

(Brumberg et al., 2018)

SSVEP Videos

https://www.youtube.com/watch?v=uunf 3FDfEno&t=11s

Steady State Visual Evoked Potential (SSVEP)

Considerations	Concerns
Degree of oculomotor control for overt attention (Brumberg, Nguyen, Pitt, & Lorenz, 2018; Peters et al.,	User history of seizures (due to flickering stimuli).
2018)	Visual Impairments
Selective attention	(Brumberg et al., 2018)
However, the individual is not required to make active decision s about when a novel target is highlighted (versus P300).	Simulated visual impairment (legal blindness) able to use BCI comparably (NT; Peters et al., 2018).
Positioning - Headrest impedance	

Motor & motor-imagery

- Provide access to AAC using changes in brain rhythms associated with:
 - Physical motor movements
 - Attempted movements (paralysis)
 - Motor imagery (mental simulation without movement; e.g., making a fist)
- Versatile
- Does not depend on external stimuli SMR with Keyboard

(Brumberg et al., 2018)

Motor-Imagery Video

https://www.youtube.com/watch?v=R-tNEy2QU0&t=63s

Berlin BCI: https://www.youtube.com/watch?v=yhR076duc8M e.g., Blankertz et al., (2006a; 2006b)

Motor Imagery

Considerations	Concerns					
<u>Task: 1st versus third person</u> (e.g., Vuckovic & Osuagwu, 2013)	No presence of the sensorimotor rhythm during covert task performance (reported as approximately 15 to 30% of the population by Blankertz et al., 2010)					
Does not rely on sensory stimuli						
Support: poor selective attention, adaptions	Increased training time/ initial preference (Geronimo et al, 2014)					
Motor imagery vs overt motor learning (Wander et al., 2013):						
 Feedback/Practice Executive function related to motor learning 	Congenital paralysis? Lesions over motor cortex					
(e.g., task switching, working memory, abstract reasoning skills, elf reflection.	- Utilize 'other' tasks (e.g., mental tasks, word association, rotation)?					
- Increased training times vs P300 and SSVEP						

Extrinsic Factors

Environmental noise

- Ventilators

(Sellers, Kubler, & Donchin, 2006)

- Distractors/ movement

Caregiver support

- BCI set up, trouble shooting, monitoring device use, training

(Brumberg et al., 2018; Wolpaw et al., 2018)

Influence of intrinsic and extrinsic factors

			Attention Modulated Visually based BCIs			Attention Modulated Auditory Only			Motor Imagery based BCIs		
	Unique profile/ features of the client	Check rows that match their profile	Visual P300 Grid	Modified P300 Grid/ RSVP	SSVEP	Auditory P300	Auditory P300: Rt & Lt Steams	ASSR: Rt & Lt Steams	Motor Imagery Audio/ Visual	Motor Imagery Audio	Motor Imagery Visual
	No-mild imp: visual acuity		1	1	1	0	0	0	1	0	1
son/	Mod-severe imp: visual acuity		0	0	0	1	1	1	0	1	0
Sen	No-mild imp: hearing		1	1	1	1	1	1	1	1	1
	Mod-severe imp: hearing		1	1	1	0	0	0	0	0	1
ical	Without a history of seizures		1	1	1	1	1	1	1	1	1
Mec	With a history of seizures		-0.5	-0.5	-1	1	1	1	1	1	1
ğ	No-mild imp: eye movement		1	D	1	1	1	1	1	1	1
Mo	Mod-severe imp: eye movement		0	1	1	1	1	1	1	1	1
еŋ	No-mild imp: 1st person motor imagery		1	1	1	1	1	1	1	1	1
Image	Mod-severe imp: 1st person motor imagery		1	1	1	1	1	1	0	0	ο
	No-mild imp: audio and/or visually based selective attention tasks		1	1	1	1	1	1	1	1	1
	Mod-severe imp: audio and/or visually based selective attention tasks		0	0	o	0	0	0	1	1	1
iou	No-Mod imp: working memory		1	1	1	1	1	1	1	1	1
ognit	Severe imp: working memory		0	0	0	0	0	0	0	0	0
0	No-mild imp: cognitive motor learning/ performance factors (e.g. task switching, self monitoring. abstract reasoning, etc)		1	1	1	1	1	1	1	1	1
	Mod-severe imp: cognitive motor learning/ performance factors		1	1	1	1	1	1	0	0	0
	TOTAL number of feature matches Add all values in each column matching their profile										
Ľť.	Literacy (reading and spelling) impairment?	Yes / No	Yes / No	Yes/No	Yes / No	Yes / No	Yes / No	Yes/No	Yes / No	Yes / No	Yes / No

Figure & following cases taken from: Pitt, K., & Brumberg, J. S. (2018a).

Clinical application case study

Following a brainstem stroke, Mrs. Holden (a 70 year old female) received a diagnosis of locked-in syndrome. An AAC evaluation revealed:

- **Strengths in** visual acuity, literacy, and selective attention / working memory skills.
- Weaknesses in cognitive-motor learning tasks (e.g., task switching, problem solving), low self-ratings on first person motor imagery, and an absent sensorimotor rhythm.
- Limited range of eye (oculomotor) movement.
- No history of seizure activity
- Posterior electroencephalography electrode recordings were largely unimpeded by her wheelchair headrest.
 BCI images from Brumberg et al., (2018)

Case Study (trials)

		Attention Modulated Visually based BCIs			Attention Modulated Auditory Only			Motor Imagery based BCIs			
	Unique profile/ features of the client	Check rows that match their profile	Visual P300 Grid	Modified P300 Grid/ RSVP	\$\$VEP	Auditory P300	Auditory P300: Rt & Lt Steams	ASSR: Rt & Lt Steams	Motor Imagery Audio/ Visual	Motor Imagery Audio	Motor Imagery Visual
ŝ	No-mild imp: visual acuity	х	1	1	1	0	0	0	1	0	1
MC	Without a history of seizures	х	1	1	1	1	1	1	1	1	1
Σ	Mod-severe imp: eye movement	х	0	1	1	1	٦	1	1	1	1
M	Mod-severe imp: 1st person motor imagery	x	1	1	1	1	1	1	0	0	0
	No-mild imp: audio and/or visually based selective attention tasks	Х	1	1	1	1	1	1	1	1	1
bog	No-Mod imp: working memory	х	1	1	1	1	1	1	1	1	1
0	Mod-Severe imp: cognitive motor learning/ performance factors (e.g. task switching, self monitoring, abstract reasoning, etc)	x	1	1	1	1	1	1	0	0	0
	TOTAL number of feature matches Add all values in each column matching their profile		6	7	7	6	6	6	5	4	5
Ľ.	Literacy (reading and spelling) impairment?	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Y e s / No

Figure taken from: Pitt, K., & Brumberg, J. S. (2018a). Guidelines for Feature Matching Assessment of Brain-Computer Interfaces for Augmentative and Alternative Communication. *American Journal of Speech-Language Pathology*, 1–15.

B) Development of BCI Screening tools

- Little standardization in BCI research for assessment
- First: RSVP-speller by Fried-Oken, et al., 2013.

Lab Expansion:

- Multidisciplinary: PT, SLP, OT, Neuroscientist, BCI engineer
- Feature matching across devices
- Sensory-cognitive-motor imagery domains (e.g., attention, working memory, following directions, cognitive motor learning, motor-imagery)
- Binary/yes no response, <60 mins, minimal fatigue
- N=12, feasible for completion.
- Both screeners are a **first step**, skill presence
- Ongoing assessment + EEG

Pitt, K., & Brumberg, J. (2018b). A screening protocol incorporating brain-computer interface feature matching considerations for augmentative and alternative communication. *Assistive Technology*, 1-12.

C) BCI access to commercial AAC devices

- BCI custom made paradigms and software
- Utilization of AAC advances over past 40 years.
- Learn a whole new system (modularity)
- Across life span/course (e.g., Pitt et al., in press)

D) BCI access to commercial AAC devices

Early efforts to access commercial AAC/AT paradigms and software

1) Row/column scanning via BCI 'switch'

- Adults with CP, and Neurotypical adults and those with ALS
- Tobii-Dynavox AAC device (Brumberg et al., 2016)
- Promising results
 - e.g., 62.2% single session offline accuracy (Brumberg et al., 2016)
 - Continuing research

2) Assistive technology software

- QualiWorld, QualiLife Inc. Paradiso-Lugano, CH (e.g., Zickler et al., 2011)
- Dynawrite text-to-speech (Thompson, Gruis & Huggins, 2013)

A heightened focus on utilizing commercially available technology:

- Promote collaborations and help navigate barriers to funding

(image take from Scherer et al., 2015)

4) Future Research Directions

A) BCI access for children

B) Engaging displays for children and adults

C) Technical barriers to BCI implementation (e.g., set up)

D) BCI availability and funding

A) BCI access for children

- Emerging

(e.g., Norton, Mullins, Alitz, & Bretl 2018)

- Need more data EEG and developing brain. (e.g., Huggins et al., 2017)
- EEG signals for individuals with congenital paralysis
 - Muscle artifacts
- Literacy and symbols
- Design ('cool', motivating themes, functions, social image)
 - Play, artistic expression, colors, characters (Light & Drager, 2007)

BCI images from Brumberg et al., (2018)

Image taken from http://blog.gtec.at/unlimited-wireless-eeg/

B) Engaging displays for children and adults

- Sterile
- Task Engagement
 - Look to learn
 - o Timocco
- BCI-AAC generalization?

(e.g., Pitt et al., in press)

(https://thinksmartbox.com/product/look-to-learn/)

(https://www.timocco.com)

- Feedback effects on performance/boredom/fatigue

Brumberg & Pitt (2019)

Zhang et al., (2019)

Image from Look to Learn; Smart Box Assistive Technology

Rock Chalk, JAYHAWK!

C) Technical barriers to BCI implementation

- Set up (gel application)
- Dry electrode technology
- Toward wireless systems
- Number of electrodes
- BCI processing algorithms (reliability)
- Artifact removal (e.g., muscle) in real time

(e.g., Brumberg et al., 2018; Miralles et al., 2015; Blain-Moraes et al.,2012; Nijboer, 2015) (Guger et al., 2012, Zander et al., 2011)

Image taken from: https://www.mysanantonio.com/news/local/communities/stoneoak/article/Researchers-try-to-catch-a-brain-wave-5728289.php

D) BCI availability and funding

BCI mostly in laboratory setting though undergoing in home trials with promising results (e.g., Wolpaw et al., 2018)

Availability of commercial/portable systems:

- g.tec P300 Intendix speller: ~\$12,500

http://www.gtec.at/Products/ Complete-Solutions/intendiX-Specs-Features

Funding

- Unknown
- Commercial partners/ documented need
- Increased reliability

(Huggins & Kovacs, 2018)

Some labs performing BCI research

1) East Tennessee State University; Johnson City, Tennessee.

https://www.etsu.edu/cas/psychology/bcilab/

2) Oregon Health & Science University; Portland, Oregon.

https://www.ohsu.edu/xd/research/centers-institutes/institute-on-development-anddisability/reknew/

3) Penn State Hershey Medical Center; Hershey, Pennsylvania.

https://alsadotorg.wordpress.com/2016/06/02/bringing-brain-computer-interfacehome/

4) Speech and Applied Neuroscience Lab; Lawrence, Kansas.

https://sanlab.ku.edu/

5) University of Michigan; Ann Arbor, Michigan.

http://www.umich.edu/~umdbi/

6) University of Pittsburgh; Pittsburgh, Pennsylvania.

http://www.herl.pitt.edu/node

7) Wadsworth Center and the National Center for Adaptive Neurotechnologies; Albany, New York.

https://www.wadsworth.org/news/national-center-for-adaptive-neurotechnologiesncan-open-house

Thank you!

- All our study participants!
- United States Society for AAC
- Dr. Stephanie Meehan
- Franklin Smith and ISAAC
- Dr. Jonathan Brumberg and Chavis Lickvar-Armstrong

Questions?

Email: <u>kmp4@ku.edu</u> https://sanlab.ku.edu/

- Ahani, A., Wiegand, K., Orhan, U., Akcakaya, M., Moghadamfalahi, M., Nezamfar, H., ... & Erdogmus, D. (2014). RSVP Icon Messenger: icon-based brain- interfaced alternative and augmentative communication. *Brain-Computer Interfaces*, 1:3-4, 192-203.
- Blain-Moraes, S., Schaff, R., Gruis, K. L., Huggins, J. E., & Wren, P. A. (2012). Barriers to and mediators of brain–computer interface user acceptance: focus group findings. *Ergonomics*, *55*(5), 516-525.
- Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.-R., Kunzmann, V., Losch, F.,& Curio,G. (2006a). The Berlin brain–computer interface: EEG-based communication without subject training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), 147–152.
- Blankertz, Benjamin and Dornhege, Guido and Krauledat, Matthias and Schröder, Michael and Williamson, John and Murray-Smith, Roderick and Müller, Klaus-Robert (2006b) *The Berlin Brain-Computer Interface presents the novel mental typewriter Hex-o-Spell.* In: Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course
- Blankertz, B., Sannelli, C., Halder, S., Hammer, E. M., Kübler, A., Müller, K. R., ... & Dickhaus, T. (2010). Neurophysiological predictor of SMR-based BCI performance. *Neuroimage*, *51*(4), 1303-1309.
- Brumberg, J., Burnison, J., Guenther, F., (2017), Brain-Machine Interfaces for Speech Resotorations. Speech Motor Control in Normal and Disordered Speech: Future Developments in Theory and Methodology. Rockville, MD: ASHA Press.
- Brumberg, J. & Pitt, K. (2019). Commercial Augmentative and Alternative Communication Device Control Via Brain-Computer Interface. Poster presented at the 2019 Assistive Technology Industry Association Convention, Orlando, FL.
- Brumberg, J., Pitt, K., Mantie-Kozlowski, A., & Burnison, J. (2018). Brain-Computer Interfaces for Augmentative and Alternative Communication: A Tutorial. *American Journal of Speech-Language Pathology*, 1-12
- Brumberg, J., Nguyen, A., Pitt, K., & Lorenz, S. (2018). Examining Sensory Ability, Feature Matching, and Assessment-Based Adaption for a Brain-Computer Interface using the Steady State Visual Evoked Potential. *Disability and Rehabilitation: Assistive Technology*, 1-9.
- Brunner, P., Joshi, S., Briskin, S., Wolpaw, J. R., Bischof, H., & Schalk, G. (2010). Does the 'P300'speller depend on eye gaze?. *Journal of neural engineering*, 7(5), 056013.
- Bryen, D. N., Heake, G., Semenuk, A., & Segal, M. (2010). Improving web access for individuals who rely on augmentative and alternative communication. *Augmentative and Alternative Communication*, 26(1), 21-29.
- Chavarriaga, R., Fried-Oken, M., Kleih, S., Lotte, F., & Scherer, R. (2017). Heading for new shores! Overcoming pitfalls in BCI design. *Brain-Computers Interfaces*, 4(1-2), 60-73.
- Chen, X., Wang, Y., Gao, S., Jung, T.-P., & Gao, X. (2015). Filter bank canonical correlation analysis for implementing a highspeed SSVEP-based brain–computer interface. Journal of Neural Engineering. 12(4). 46008.
- Debener. S.. Minow. F.. Emkes. R.. Gandras. K.. & De Vos. M. (2012). How about taking a low-cost, small, and wireless EEG for a walk?. *Psvchophvsioloav.* 49(11). 1617-1621.
- Duvinage. M.. Castermans. T.. Petieau. M.. Hoellinger. T.. Cheron. G.. & Dutoit. T. (2013). Performance of the Emotiv Epoc headset for P300-based applications. *Biomedical engineering online*, *12*(1), 56.

- Fried-Oken. M.. Moonev. A.. Peters. B.. & Oken. B. (2013). A clinical screening protocol for the RSVP keyboard brain–computer interface. *Disability and Rehabilitation: Assistive Technology*, 10(1), 11-18.
- Ehlers. J.. Valbuena. D.. Stiller. A.. & Gräser. A. (2012). Age-specific mechanisms in an SSVEP-based BCI scenario: evidences from spontaneous rhythms and neuronal oscillators. *Computational intelligence and neuroscience*, 2012, 20.
- Fager, S., Fried-Oken, M., Jakobs, T., & Beukelman, D. R. (2019). New and emerging access technologies for adults with complex communication needs and severe motor impairments: State of the science. *Augment Altern Commun.* 1-13.
- Geronimo. A.. Simmons. Z.. & Schiff. S. J. (2016). Performance predictors of brain-computer interfaces in patients with amvotrophic lateral sclerosis. *Journal of Neural Engineering.* 13 (2). 026002.
- Guger. C.. Krausz. G.. Allison. B. Z.. & Edlinger. G. (2012). Comparison of dry and gel based electrodes for P300 brain–computer interfaces. *Frontiers in neuroscience*, *6*, 60.
- Halder, S., Takano, K., & Kansaku, K. (2018). Comparison of four control methods for a five-choice assistive technology. *Frontiers* in human neuroscience, 12.
- Holz, E. M., Botrel, L., Kaufmann, T., & Kübler, A. (2015). Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: A case study. *Archives of Physical Medicine and Rehabilitation*, *96*(3), S16–S26.
- Huggins, J. E., Guger, C., Ziat, M., Zander, T. O., Taylor, D., Tangermann, M., ... & Ruffini, G. (2017). Workshops of the Sixth International Brain-Computer Interface Meeting: brain-computer interfaces past, present, and future. *Brain-Computer Interfaces*, 4(1-2), 3-36.
- Huggins, J. E., & Kovacs, T. (2018). Brain–Computer Interfaces for Augmentative and Alternative Communication: Separating the Reality From the Hype. *Perspectives of the ASHA Special Interest Groups*, 3(12), 13-2
- Huggins, J. E., Wren, P. A., & Gruis, K. L. (2011). What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. *Amyotrophic Lateral Sclerosis*, 12(5), 318-324
- Käthner, I., Ruf, C. A., Pasqualotto, E., Braun, C., Birbaumer, N., & Halder, S. (2013). A portable auditory P300 brain-computer interface with directional cues. *Clinical Neurophysiology*, *124* (2), *327–338*.
- Klobassa, D. S., Vaughan, T. M., Brunner, P., Schwartz, N. E., Wolpaw, J. R., Neuper, C., & Sellers, E. W. (2009). Toward a high-throughput auditory P300-based brain-computer interface. *Clinical Neurophysiology*, 120 (7), 1252–1261.
- Liberati, G., Pizzimenti, A., Simione, L., Riccio, A., Schettini, F., Inghilleri, M., ... & Cincotti, F. (2015). Developing brain-computer interfaces from a user-centered perspective: Assessing the needs of persons with amyotrophic lateral sclerosis, caregivers, and professionals. *Applied ergonomics*, *50*, 139-146.
- Light, J., & Drager, K. (2007). AAC technologies for young children with complex communication needs: State of the science and future research directions. *Augmentative and Alternative Communication*, 23(3), 204-216.
- Light, J., & McNaughton, D. (2013). Putting people first: Re-thinking the role of technology in augmentative and alternative communication intervention. *Augmentative and Alternative Communication*, 29(4), 299-309.

- Light, J., McNaughton, D., & Caron, J. (2019). New and emerging AAC technology supports for children with complex communication needs and their communication partners: State of the science and future research directions. *Augmentative and Alternative Communication*, 1-16.
- Light, J., Wilkinson, K. M., Thiessen, A., Beukelman, D. R., & Fager, S. K. (2019). Designing effective AAC displays for individuals with developmental or acquired disabilities: State of the science and future research directions. *Augmentative and Alternative Communication*, 1-14.
- Light, J., & Drager, K. (2007). AAC technologies for young children with complex communication needs: State of the science and future research directions. *Augmentative and Alternative Communication*, 23(3), 204-216.
- Light, J., & McNaughton, D. (2013). Putting people first: Re-thinking the role of technology in augmentative and alternative communication intervention. *Augmentative and Alternative Communication*, 29(4), 299-309.
- Light, J., McNaughton, D., & Caron, J. (2019). New and emerging AAC technology supports for children with complex communication needs and their communication partners: State of the science and future research directions. Augmentative and Alternative Communication, 1-16.
- Light, J., Wilkinson, K. M., Thiessen, A., Beukelman, D. R., & Fager, S. K. (2019). Designing effective AAC displays for individuals with developmental or acquired disabilities: State of the science and future research directions. *Augmentative and Alternative Communication*, 1-14.
- Marchetti, M., & Priftis, K. (2015). Brain–computer interfaces in amyotrophic lateral sclerosis: A metanalysis. *Clinical Neurophysiology*, *126*(6), 1255-1263.
- Miralles, F., Vargiu, E., Rafael-Palou, X., Solà, M., Dauwalder, S., Guger, C., ... & Armstrong, E. (2015). Brain–computer interfaces on track to home: results of the evaluation at disabled end-users' homes and lessons learnt. *Frontiers in ICT*, 2, 25.
- Norton, J. J., Mullins, J., Alitz, B. E., & Bretl, T. (2018). The performance of 9–11-year-old children using an SSVEP-based BCI for target selection. *Journal of neural engineering*, 15(5), 056012.
- Nijboer, F. (2015). Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities. Annals of physical and rehabilitation medicine, 58(1), 35-38.
- Oken, B., Memmott, T., Eddy, B., Wiedrick, J., & Fried-Oken, M., (2018). Vigilance state fluctuations and performance using brain–computer interface for communication, Brain-Computer Interfaces, 5:4, 146-156,
- Pasqualotto, E., Matuz, T., Federici, S., Ruf, C. A., Bartl, M., Olivetti Belardinelli, M., ... & Halder, S. (2015). Usability and workload of access technology for people with severe motor impairment: a comparison of brain-computer interfacing and eye tracking. *Neurorehabilitation and neural repair*, 29(10), 950-957.
- Perseh, B., & Kiamini, M. (2013). Optimizing feature vectors and removal unnecessary channels in BCI speller application. *Journal of Biomedical Science and Engineering*, 6(10), 973
- Peters, B., Mooney, A., Oken, B., & Fried-Oken, M. (2016). Soliciting BCI user experience feedback from people with severe speech and physical impairments. *Brain-Computer Interfaces*, 3(1), 47-58.
- Peters, B., Higger, M., Quivira, F., Bedrick, S., Dudy, S., Eddy, B., ... & Erdogmus, D. (2018). Effects of simulated visual acuity and ocular motility impairments on SSVEP brain-computer interface performance: an experiment with Shuffle Speller. *Brain-Computer Interfaces*, 5(2-3), 58-72.

Phillips, B. and Zhao, H., 1993. Predictors of assistive technology abandonment. Assistive Technology, 5, 36–45.

- Pitt, K., & Brumberg, J. S. (2018a). Guidelines for Feature Matching Assessment of Brain-Computer Interfaces for Augmentative and Alternative Communication. *American Journal of Speech-Language Pathology*, 1–15
- Pitt, K., & Brumberg, J. (2018b). A screening protocol incorporating brain-computer interface feature matching considerations for augmentative and alternative communication. *Assistive Technology*, 1-12.
- Pitt, K., Brumberg, J. & Pitt, A. (in press). Considering Augmentative and Alternative Communication Research for Brain-Computer Interface Practice. Assistive Technology Outcomes and Benefits.
- Riccio, A., Simione, L., Schettini, F., Pizzimenti, A., Inghilleri, M., Belardinelli, M. O., . . . Cincotti, F. (2013). Attention and P300based BCI performance in people with amyotrophic lateral sclerosis. *Frontiers in Human Neuroscience*, *7*, 732.
- Salameh, J., Brown Jr, R., & Berry, J.(2015). Amyotrophic Lateral Sclerosis: Review. In Seminars in neurology (Vol. 35, No. 4, pp. 469-476).
- Scherer, R., Billinger, M., Wagner, J., Schwarz, A., Tassilo, D., Bolinger, E., ... Mu, G. (2015). Thought-based row-column scanning communication board for individuals with cerebral palsy. *Annals of Physical and Rehabilitation Medicine, 58,* 14–22.
- Sellers, E. W., Kubler, A., & Donchin, E. (2006). Brain–computer nterface research at the University of South Florida Cognitive Psychophysiology Laboratory: The P300 speller. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), 221–224.
- Sellers, E. W., Vaughan, T. M., & Wolpaw, J. R. (2010). A brain-computer interface for long-term independent home use. *Amyotrophic lateral sclerosis*, 11(5), 449-455.
- Sprague, S. A., McBee, M. T., & Sellers, E. W. (2016). The effects of working memory on brain–computer interface performance. *Clinical Neurophysiology*, *127*(2), 1331-1341.
- Suefusa, K., & Tanaka, T. (2017). A comparison study of visually stimulated brain–computer and eye-tracking interfaces. *Journal of neural engineering*, 14(3), 036009.
- Thompson, D. E., Gruis, K. L. & Huggins, J. E. (2013) A plug-and-play brain-computer interface to operate commercial assistive technology, *Disability and Rehabilitation: Assistive Technology*, *9*(2), 144150
- Townsend, G., & Platsko, V. (2016). Pushing the P300-based brain–computer interface beyond 100 bpm: Extending performance guided constraints into the temporal domain. *Journal of neural engineering*, 13(2), 026024.
- Vuckovic, A. & Osuagwu, B. A. (2013). Using a motor imagery questionnaire to estimate the performance of a Brain-Computer Interface based on object oriented motor imagery. *Clinical Neurophysiology*, 124 (8), 1586–1595.
- Wander, J., Blakely, T., Miller, K., Weaver, K., Johnson, L., Olson, J., . . . Ojemann, J. (2013). Distributed cortical adaptation during learning of a brain computer interface task. *Proceedings of the National Academy of Sciences*, 110 (26), 10818–10823.
- Wolpaw, J. R., Bedlack, R. S., Reda, D. J., Ringer, R. J., Banks, P. G., Vaughan, T. M., ... & McFarland, D. J. (2018). Independent home use of a brain-computer interface by people with amyotrophic lateral sclerosis. *Neurology*, 10-1212.
- Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. *Clinical neurophysiology*, *113*(6), 767-791.

- Zander, T. O., Lehne, M., Ihme, K., Jatzev, S., Correia, J., Kothe, C., ... & Nijboer, F. (2011). A dry EEG-system for scientific research and brain–computer interfaces. *Frontiers in neuroscience*, *5*, 53.
- Zhang, J. Z., Jadavji, Z., Zewdie, E., & Kirton, A. (2019). Evaluating if Children Can Use Simple Brain Computer Interfaces. *Frontiers in Human Neuroscience*, 13, 24.
- Zickler, C., Riccio, A., Leotta, F., Hillian-Tress, S., Halder, S., Holz, E., ... & Kübler, A. (2011). A brain-computer interface as input channel for a standard assistive technology software. *Clinical EEG and Neuroscience*, 42(4), 236-244.

Supporting people who use AAC and their families affected by disasters: https://aacdisasterrelief.recovers.org/

SAVE THE DATE! May 8, 2019, 7:00 Eastern Dr. Kathy Howery, Mental Health and Students with Complex Communication Needs: Let's Talk About It! Check back at <u>https://ussaac.org/news-</u> <u>events/webinars/</u> for additional details and registration information. Follow USSAAC on Facebook for up-to-date and "breaking" news.

Please consider joining USSAAC! Check out https://ussaac.org/membership/ for benefits!

ISAAC is excited to announce that the 19th Biennial Conference of the International Society for Augmentative and Alternative Communication, **ISAAC 2020**, will be held on the **RIVIERA MAYA**, **QUINTANA ROO**, **MEXICO**.

AUGUST 1-2 AAC Camp, Pre-Conference Workshops, Executive and Council Meetings

> AUGUST 3-6 Main Conference, Riviera Maya, Quintana Roo, Mexico

JOIN US for AAC events and perspectives, the latest in research and clinical innovations, workshops, seminars, exhibits, social events, entertainment - everything you have come to expect from an ISAAC conference, and more!

Mark your calendar today, and save the date for ISAAC 2020 in Mexico!

For more information, visit us at www.isaac-online.org and follow #ISAAC2020 on Twitter.

www.isaac-online.org

ISAAC se complace en anunciar que el próximo XIX Congreso de la Sociedad Internacional de Comunicación Aumentativa y Alternativa, ISAAC 2020, se llevará a cabo en la RIVIERA MAYA, QUINTANA ROO, MÉXICO.

1-2 DE AGOSTO Campamento CAA, Talleres Preconferencia, Juntas Ejecutivas y del Consejo

> 3-6 DE AGOSTO Congreso Principal, Riviera Maya, Quintana Roo, MÉXICO

ÚNETE Y PARTICIPA en eventos de CAA, perspectivas, lo último en investigaciones e innovaciones clínicas, talleres, seminarios, exhibiciones, eventos sociales, entretenimiento y todo lo que esperas de un congreso de ISAAC jy mucho más!.

Anótalo en tu calendario y aparta la fecha para ISAAC 2020 en México

Para mayor información consulta nuestro sitio web www.isaac-online.org y síguenos en #ISAAC2020 en Twitter

www.isaac-online.org